skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hicks_Pries, Caitlin E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Mycorrhizal fungi are important drivers of soil organic matter dynamics, but it can be difficult to isolate the effects of the fungi themselves from co-varying traits of their host trees. For example, many trees with an evergreen leaf habit associate with ectomycorrhizal (ECM) fungi, while many deciduous tree species associate with arbuscular mycorrhizal (AM) fungi. Because leaf habit influences the quantity and quality of organic matter inputs to soil, it is often an important factor in soil carbon and nitrogen dynamics, and thus can mask the effects of mycorrhizal fungi on soil organic matter processes. We evaluated how tree mycorrhizal associations and leaf habit separately influence the amount and composition of mineral-associated organic matter (MAOM) and particulate organic matter (POM) in forest soils in New Hampshire and Vermont, USA. We measured carbon (C) and nitrogen (N) concentrations and C:N ratios of three soil density fractions beneath six tree species that vary in mycorrhizal association and leaf habit. We found lower concentrations of MAOM C and N beneath evergreen vs. deciduous trees, but only for tree species associating with AM fungi. Further, MAOM C:N was higher beneath evergreen trees and beneath trees with ECM fungi rather than AM fungi. These results add to the growing body of support for mycorrhizal fungi as mediators of soil organic matter dynamics, suggesting that the MAOM fraction is more sensitive to leaf habit beneath AM-associated versus ECM-associated trees. Because MAOM decomposition is thought to be less responsive than POM decomposition to changes in soil temperature and moisture, differences in the tendency of AM- and ECM-dominated forests to support MAOM formation and persistence may lead to systematic differences in the response of these forest types to ongoing climate change. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. As the interface between plants and soil, the organic horizon is the foundation of forest ecosystems. Two potential predictors of O-layer properties, vegetation and mineral soil type, are difficult to separate because they typically covary. We conducted a factorial study involving four canopy tree species and two soil types with distinctly different hydrology and topographic position to parse patterns in chemistry and microbiota of the O-layer in a north-temperate deciduous forest. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less